Environmental Product Declaration

In accordance with ISO 14025:2006 and ISO 21930:2017 for:

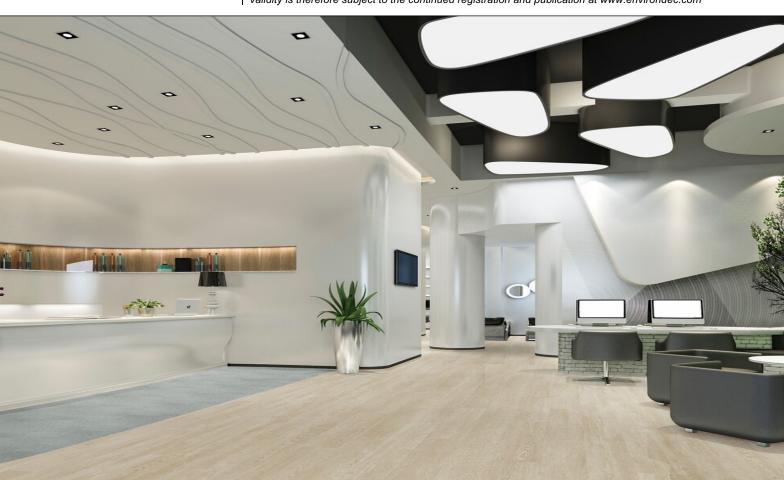
Nidra[™] and Zenscape[™]

ArmstrongFlooring®

Programme: The International EPD® System, www.environdec.com

Programme operator: **EPD International AB**

Licensee: EPD North America (www.epdna.com)


EPD registration number: EPD-IES-0026638:001

Publication date: 2025-11-03 Valid until: 2030-11-03

This EPD was done in accordance with ISO 14025 and ISO 21930.

This EPD does not comply with EN15804+A2.

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

	The International EPD® System				
	EPD International AB				
	Box 210 60				
Programme and Programme Operator	SE-100 31 Stockholm				
Frogramme and Frogramme Operator	Sweden				
	www.environdec.com				
	info@environdec.com				
	as provided by EPD North America				
General Program instructions and Version	General Programme Instructions for the International EPD® System. Version 5.0. 2024-06-				
Number ¹	19				
EPD Owner	AHF Products				
The EPD owner has the sole ownership, liability, and	3840 Hempland Road				
responsibility for the EPD.	Mountville, PA 17554				
Declaration Number	EPD-IES-0026638:001				
Declared Product and Functional Unit	Nidra™ and Zenscape™				
	1 m² of installed flooring with a building service life of 75 years				
Reference PCR and Version Number ²	UL Part A: Life Cycle Assessment Calculation Rules and Report Requirements, Version 4.0				
	UL Part B: Flooring EPD Requirements. UL 10010-7, September 28, 2018				
Product's intended Application and Use	Commercial Flooring Applications				
Product RSL	30 years				
Markets of Applicability	North America				
Date of Issue	2025-11-03				
Period of Validity	5 years from date of issue				
EPD Type	Product Specific				
Range of Dataset Variability	N/A				
EPD Scope	Cradle-to-Grave				
Year of reported manufacturer primary data	2024				
LCA Software and Version Number	LCA FE 10.9 (formerly GaBi)				
LCI Database and Version Number	MLC Database 2025.1 (formerly GaBi Database)				
	TRACI 2.1				
LCIA Methodology and Version Number	CML 2001-Jan 2016				
	IPCC AR6				
	Lindita Bushi, PhD, Chair				
Part A PCR review was conducted by:	Hugues Imbeault-Tétreault, Eng., M.A.Sc.				
	Jack Geibig				
The sale and an BOD and an area doubted by	Jack Geibig (Chair)				
The sub-category PCR review was conducted by:	Thomas Gloria, PhD Thaddeus Owen				
Independent third-party verification of the	Maddeus Owell				
declaration and data, according to ISO 14025:2008.	☐ EPD Process Certification ☐ EPD Verification ☐ Pre-Verified Tool				
This declaration was independently verified in					
accordance with ISO 14025: 2006. The UL					
Environment "Part A: Calculation Rules for the Life					
Cycle Assessment and Requirements on the					
Project Report," v4.0, based on CEN Norm EN	James Mallantina Thriva ESC				
15804 (2012) and ISO 21930:2017, serves as the	James Mellentine, Thrive ESG				
core PCR, with additional considerations from the					
USGBC/UL Environment Part A Enhancement					
(2017)					
☐ Internal ☐ External					
This life cycle assessment was conducted in	WAR Sustainability Consulting				
accordance with ISO 14044 and the reference PCR by:	WAP Sustainability Consulting				
This life cycle assessment was independently					
verified in accordance with ISO 14044 and the	James Mellentine, Thrive ESG				
reference PCR by:	dunios monorane, minve 200				
The procedure for follow-up of data during EPD					
validity, as defined by the GPI, involves third party	☐ Yes				
verifier:					
	î .				

Not all requirements in the GPI are fulfilled, particularly the requirement, for construction products, to follow EN 15804 for certain aspects of the LCA method. ²This EPD is based on a PCR that satisfies procurement rules at the federal, state, and municipal levels which call for EPDs based on the UL Part B PCR. The UL Part B PCR was used to meet regulatory (example: Buy Clean California Act, etc.) and market expectations (example: Building Transparency EC3 comparisons, LEED and existing vendor procurement requirements, product scoring programs, etc.). The EPD should not be used outside of this context.

Environmental declarations from different programs (ISO 14025) may not be comparable.

The declared environmental performance in the EPD shall not be compared with EN 15804-compliant EPDs developed under PCR 2019:14 in the International EPD System. Comparison of the environmental performance in the EPD shall not be compared with EPDs developed under PCR 2019:14 in the international EPD System. Comparison of the environmental performance of Flooring Products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Full conformance with the PCR for Products allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible." Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages

The EPD owner has the sole ownership, liability, and responsibility of the EPD.

Information about EPD Owner

AHF Products 3840 Hempland Road Mountville, PA 17554					
LCA Practitioner	WAP Sustainability Consulting 103 Powell Ct, Suite 200 Brentwood, TN 37027				
An EPD may be updated or depublished if conditions change. To find the latest version of the EPD and to confirm its validity, see www.environdec.com.					

Company Description

AHF Products is the leader in the design and manufacturing of Heterogeneous Vinyl Sheet. Its brand, Armstrong Flooring®, offers a breadth of Heterogeneous Vinyl Sheet designs and colors providing design flexibility to enhance commercial spaces in education, retail, hospitality, healthcare, corporate and more. For more information about Armstrong Flooring Heterogeneous Vinyl Sheet and detailed product technical information, please visit the website at ArmstrongFlooring.com.

Product Information

Product Description

This EPD covers the following brands: Nidra™ and Zenscape™.

Armstrong Flooring®'s Heterogeneous Vinyl Sheet (HET) is within UNCPC 36910 Floor coverings of plastics, in rolls or in the form of tiles; wall or ceiling coverings of plastics, under CSI division 09 65 19: Resilient Tile Flooring. Nidra™ and Zenscape™ is a multi-layered construction consisting of a clear vinyl wear layer and a printed and reinforced fiberglass inner layer on a solid vinyl backing with or without foam base. The polyurethane coating in the product provides better stain resistance performance and provides an enhanced level of performance, standing up to commercial demands. It is a no-polish, low-maintenance flooring option.

Table 1: Nidra™ and Zenscape™ Technical Data

F	arameter		Nidra™ and Zenscap	e™ Unit
Product weight			3.30 kg/m ²	
Wear layer thickness			0.55	mm
Total thickness	Total thickness			mm
Product Form	Roll	Length	25	m
Product Form	Koli	Width	2	m

Application

Nidra[™] and Zenscape[™] is intended for use in residential, commercial, and light industrial applications, depending on the wear layer thickness. Applications include education, healthcare, retail, and office sectors.

Properties of Declared Product as Delivered

Nidra[™] and Zenscape[™] are delivered to the building site in a roll format, packaged on a paper tube with paper. The rolls are stacked on a wooden pallet for shipment.

Manufacturing

The raw materials for Nidra[™] and Zenscape[™] are sourced from North America and Asia, and the product is manufactured in Suzhou, China. The manufacturing process involves the hot mixing of the raw materials milled and calendered into a hot sheet that is then cooled and packaged for shipment.

Reference Service Life and Estimated Building Service Life

The reference service life of Nidra[™] and Zenscape[™] are assumed to be 30 years given that the product is installed per manufacturer guidelines. Therefore, after initial installation in a building with an estimated service life (ESL) of 75 years, 1.5 replacements are required.

Content Declaration

The total mass of 1 m² of flooring product, and the installed product mass are provided in Table 2.

Table 2: Product Composition, per 1 m²

Material	Nidra™ and Zenscape™
Limestone (%)	58%
Resin (%)	27%
Plasticizer (%)	13%
Additive (%)	1%
Stabilizer (%)	<1%
UV Coating (%)	<1%
Pigment (%)	<1%
Total (%)	100
Total Mass (kg/m²)	3.30E+00
Total Mass – installed, with adhesive (kg/m²)	3.49E+00

Table 3: Packaging details, per 1 m²

Material	Value (kg / m²)	Biogenic Material (kg C / m²)
Wood Pallets	6.01E-02	2.46E-02
Cardboard and Paper	9.44E-02	4.06E-02

Mandatory Environmental Information

No substances required to be reported as hazardous per the EPA's Resource Conservation and Recovery Act (US EPA, 2023) were identified during the LCA associated with the production of this product.

Life Cycle Assessment Information

Declaration of Methodological Framework

The LCA follows an attributional approach.

ArmstrongFlooring[®]

Functional Unit

The functional unit is one (1) m² of installed flooring, with a total thickness of 2.0mm. The installed product plus any installation adhesives and flooring installation waste is equivalent to 3.49 kg per functional unit. The reference service life (RSL) is 30 years under normal indoor use conditions.

System Boundary

This EPD is a Cradle-to-Grave study. The system boundaries studied as part of this life cycle assessment include the following stages which are shown in the table below:

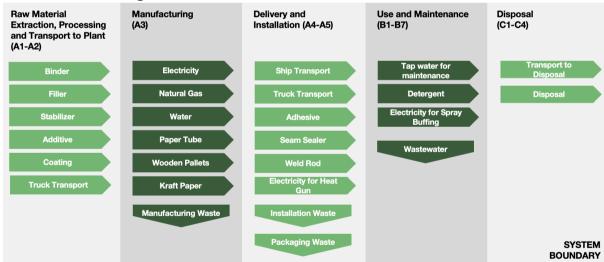
- Production stage Modules A1 to A3 which include the extraction, manufacture, and transportation of raw materials, flooring production.
- Construction Stage Modules A4-A5 which include the transportation to job site and installation.
- Use Stage Includes on Modules B2 (Use) and B4 (Replacement) as the other modules B1,
 B3 and B5-B7 are declared as having zero impact as no repair or refurbishment is expected once the product is installed. The use stage accounts for cleaning of the floor.
- End-of-Life Modules C1-C4 which includes disposal of the product.

Each module includes provisions of all relevant materials, products, and energy. Potential impacts and waste are considered in the module in which they occur. Per the PCR, capital goods and infrastructure flows are assumed to not significantly affect LCA results or conclusions and thus are excluded from the analysis.

Table 4: Life Cycle Stages Included in the Study

	Pr	oducti	on	Cons io					Use					End o	of Life		Benefits & Loads Beyond System Boundary
	A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
	Raw Material Supply	Transport	Manufacturing	Transport to Site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse, Recovery, Recycling Potential
Modules Declared	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	ND
Geography	US,	CN	CN							US							ND

Table 5: System Boundary and Modules


	<u> </u>	<i>y</i>		
Module Name	Description	Analysis Period	Summary of Included Elements	
A1	Product Stage: Raw Material Supply	2024	Raw Material sourcing and processing as defined by secondary data.	
A2	Product Stage: Transport	2024	Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and estimated distance.	
A3	Product Stage: Manufacturing	2024	Energy and water inputs required for manufacturing products from raw materials. Packaging materials and manufacturing waste are included as well.	
A4	Construction Process Stage: Transport	2024	Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distance.	

Module Name	Description	Analysis Period	Summary of Included Elements
A5	Construction Process Stage: Installation	2024	Installation materials, installation waste and packaging material waste.
B1	Use Stage: Use	2024	Use of the product.
B2	Use Stage: Maintenance	2024	Cleaning energy, water, and materials, including refinishing the product.
В3	Use Stage: Repair	2024	Product typically not repaired during use.
B4	Use Stage: Replacement	2024	Total materials and energy required to manufacture a replacement.
B5	Use Stage: Refurbishment	2024	Product typically not refurbished during use.
В6	Operational Energy Use	2024	Operational Energy Use of Building Integrated System During Product Use
В7	Operational Water Use	2024	Operational Water Use of Building Integrated System During Product Use
C1	EOL: Deconstruction	2024	No inputs required for deconstruction.
C2	EOL: Transport	2024	Shipping from project site to waste disposal.
C3	EOL: Waste Processing	2024	Waste processing if incineration as chosen disposal pathway per Part A of the PCR.
C4	EOL: Disposal	2024	Disposal modeled by region as per Part A of the PCR.
D	Benefits beyond system	ND	Credits from energy or material capture.

Process Flow Diagram:

Estimates and Assumptions

All estimates and assumptions are within the requirements of ISO 14040/44. Per the PCR, a distance of 800 km (497 miles) by diesel-powered truck is used to represent the distribution of product from the port of entry into the United States to the installation site. Estimation of the inbound transportation distance of 10,571 km (6,569 miles) from the manufacturing site in China by cargo ship is also included. Additionally, transportation is assumed to be 161 km (100 miles) by diesel-powered truck for installation waste and product at end-of-life to disposal.

Cut-Off Criteria

All known material inputs (based on total mass of the final product) were included within the scope of analysis. No known flows were deliberately excluded. Cut-off rules are consistent with the PCR.

Software

Sphera LCA for Experts 10.9.0.31

Data Sources

Primary data were collected by facility personnel and was used for all manufacturing processes. Secondary data for material production, energy generation, transport, and waste disposal were sourced from the Sphera Managed LCA Content Database 2025.1.

Table 6: Declaration of data sources and share of primary data

Process	Source type	Source	Reference year	Data category	Share of primary data, of GWP GHG results for A1-A31
Production of PVC, including compounded PVC	Database	Sphera LCA for experts 2025.1	2024	Secondary	0%
Generation of electricity used in manufacturing product	Database	Sphera LCA for experts 2025.1	2024	Primary	30%
Production of plasticizer	Database	Sphera LCA for experts 2025.1	2024	Secondary	0%
Total share of primary data, o	30%				

¹The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that do not capture all relevant aspects of data quality. The indicator is not comparable across product categories.

Period Under Review

The period under review is calendar year 2024.

Allocation

General principles of allocation were based on ISO 14040/44. There are no products other than the products under study that are produced as part of the manufacturing processes. Since there are no coproducts, no allocation based on co-products is required. To derive a per-unit value for manufacturing inputs and outputs such as energy, packaging, and waste, allocation based on total production by mass was utilized.

Comparability and Benchmarking

The user of the EPD should take care when comparing EPDs from different companies. Assumptions, data sources, and assessment tools may all impact the uncertainty of the final results and make comparisons misleading. Without understanding the specific variability, the user is therefore, not encouraged to compare EPDs. Even for similar products, differences in use and end-of-life stage assumptions, and data quality may produce incomparable results. Comparison of the environmental performance of flooring products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR. Full conformance with the PCR for flooring products allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible. Example of variations: Different LCA

ArmstrongFlooring[®]

software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Comparison of the environmental performance of construction works and construction products using EPD information shall be based on the product's use and impacts at the construction works level. In general, EPDs may not be used for comparability purposes when not considered in a construction works context. Given this PCR ensures products meet the same functional requirements, comparability is permissible provided the information given for such comparison is transparent and the limitations of comparability explained.

Installation

Nidra™ and Zenscape™ must be installed in strict accordance with the Armstrong Flooring® installation instructions. This comprehensive guide to installation provides all the information needed to properly install the heterogeneous vinyl sheet flooring to ensure it will look great and perform exactly as it should. Visit <u>Armstrong Flooring.com</u> for more information.

Nidra[™] and Zenscape[™] are installed using a spread adhesive. Sheet seams can be sealed using a heat welding method or a seam sealer product, depending on the setting of product use. Adhesive and seam sealer are applied manually, while the welding method requires use of an electrically-powered heat gun. Packaging and installation waste disposal have been modeled as per guidelines in section 2.8.5 of the PCR Part A.

Table 7: Transport to Building Site Details (A4)

racio 1. Transport to Bananing Olio Botano (111)						
Parameter	Ship	Truck	Unit			
Vehicle Type	GLO: Bulk commodity carrier, 1,000 to 250,000 dwt payload capacity, deep sea	US: Truck - Heavy Heavy-duty Diesel Truck / 53,333 lb payload - 8b	-			
Fuel Efficiency	22,200	56.2	L/100km			
Fuel Type	Heavy Fuel Oil	Diesel	-			
Distance	10,571	800	km			
Capacity Utilization	53	53	%			
Gross density of product transported	1.65E+03		kg/m ³			

Table 8: Installation Scenario Details, per 1 m² (A5)

Parameter	Nidra™ and Zenscape™	Unit
1 20 200 200		
Adhesive	1.85E-01	kg
Seam Sealer	3.88E-03	kg
Weld Rod	6.15E-03	kg
Electricity	9.84E-03	MJ
Product loss per functional unit [%]	5	%
Installation waste to Landfill	1.65E-01	kg
Packaging Waste to Landfill	3.09E-02	kg
Packaging Waste to Incineration	7.72E-03	kg
Packaging Waste to Recycling	1.05E-01	kg
VOC Emissions	0.00E+00	μg/m3
Biogenic carbon content of packaging – pallets	9.01E-02	kg CO2 eq
Biogenic carbon content of packaging – paper	1.49E-01	kg CO2 eq

Table 9: Reference Service Life

Name	Value	Unit
Reference Service Life	30	Years
Declared product properties (at the gate) and finishes, etc.	See Table 1 for technical d	etails
Assumed quality of work, when installed in accordance with manufacturer's instructions	Per industry standards	
Indoor environment		typical indoor environment, installation instructions and red
Maintenance	See Use section for mainter	nance instructions

Use

Maintenance is required for Nidra[™] and Zenscape[™]. Actual maintenance schedules and procedures may vary based on the product installation type and location. As such, average cleaning and maintenance procedures from the Resilient Floor Covering Institute (RFCI) Heterogeneous Sheet Vinyl (RFCI, 2024) are used in this EPD. Per RFCI, it is assumed that a typical maintenance procedure consists of weekly sweeping and damp mopping with a neutral cleaner.

Table 10: Maintenance Details (B2)

Activity	Input	Value	Unit	
	Frequency	3,900	Cycles/ESL	
Sweeping & Damp Mopping	Water	0.00580	m²/m²/yr	
	Cleaning agent	0.0119	kg/m²/yr	

Reuse, Recycling and Energy Recovery

At the end of its life, the flooring is removed from the building manually (i.e., no equipment or energy required), transported via truck to a landfill, and disposed.

Disposal

At the end of life, this product is assumed to be disposed per PCR requirements. 100% of the product is assumed to be landfilled at end-of-life. Waste classification is based on the Resource Conservation and Recovery Act). Disposal in municipal landfill or commercial incineration facilities is permissible and should be done in accordance with local, state, and federal regulations.

Table 11: End-of-Life Details (C1-C4)

Parameter	Nidra™ and Zenscape™	Unit
Collected as mixed construction waste	3.49E+00	kg/m²
Waste to Landfill	3.49E+00	kg/m²
Distance to Landfill	161	km

Environmental Performance

All results are given per functional unit, which is 1 m² of installed flooring over an estimated building life of 75 years. Environmental Impacts were calculated using the Sphera LCA for Experts software platform. Impact results have been calculated using IPCC AR6, TRACI 2.1, and CML 2001-Jan 2016 characterization factors. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. The Impact Category Key shown in Table 14, Table 15, and Table 16 give definitions of relevant acronyms.

The LCIA impact categories referenced below are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes.

The results of the end-of-life stage (module C) should be considered when using the results of the production stage (modules A1-A3). All results are presented per functional unit, which is 1 m² of flooring over a 75-year building ESL. Results for life cycle stages B1, B3, B5, B6, B7, C1, and C3 are zero and are excluded from the following tables for readability.

ArmstrongFlooring®

Table 12: LCIA Results for Nidra™ and Zenscape™, per 1m² of installed flooring

Indicator	A1 – A3	A4	A5	B2	B4	C2	C4	Total
GWPi [kg CO₂ eq]	6.57E+00	3.95E-01	5.34E-01	1.45E+00	1.14E+01	4.35E-02	7.72E-02	2.05E+01
GWPe [kg CO ₂ eq]	6.69E+00	3.94E-01	5.63E-01	1.33E+00	1.16E+01	4.33E-02	7.74E-02	2.07E+01
AP [kg SO ₂ eq.]	1.36E-02	4.16E-03	1.30E-03	2.79E-03	2.94E-02	1.32E-04	3.96E-04	5.18E-02
EP [Ig N eq.]	1.11E-03	2.45E-04	1.63E-04	4.99E-03	3.23E-03	1.11E-05	6.21E-04	1.04E-02
ODP [kg CFC 11 eq.]	5.18E-09	1.22E-14	2.59E-10	1.92E-13	8.16E-09	1.95E-15	1.64E-14	1.36E-08
SFP [kg O₃ eq.]	1.46E+01	6.92E-01	1.35E+00	1.64E+00	2.53E+01	7.93E-02	1.50E-01	4.38E+01
ADP-fossil* [MJ]	2.63E-01	1.16E-01	2.60E-02	2.73E-02	6.23E-01	2.95E-03	7.08E-03	1.07E+00

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Table 13: Additional Indicators for Nidra™ and Zenscape™, per 1m² of installed flooring

Table 13: Additional Indicators for Nidra™ and Zenscape™, per 1m² of installed flooring								
Indicator	A1 – A3	A4	A5	B2	B4	C2	C4	Total
	Resource Use Indicators							
RPR _E [MJ]	9.79E+00	1.22E-01	1.37E+00	4.66E+00	1.72E+01	2.32E-02	1.66E-01	3.74E+01
RPR _M [MJ]	1.55E+00	0.00E+00	7.76E-02	0.00E+00	2.45E+00	0.00E+00	0.00E+00	4.08E+00
NRPR _E [MJ]	9.69E+01	4.85E+00	9.47E+00	2.03E+01	1.69E+02	5.59E-01	1.17E+00	3.44E+02
NRPR _M [MJ]	1.59E+01	0.00E+00	7.97E-01	0.00E+00	2.51E+01	0.00E+00	0.00E+00	4.18E+01
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m ³]	3.55E-02	1.33E-04	2.67E-03	8.37E-03	5.77E-02	2.51E-05	1.27E-04	1.05E-01
			Waste and O	utput Flow Inc	dicators			
HWD [kg]	4.94E-06	5.17E-10	1.37E-06	0.00E+00	9.46E-06	9.26E-11	2.80E-10	1.58E-05
NHWD [kg]	1.24E-01	4.49E-04	1.94E-01	4.71E-01	5.70E+00	5.71E-05	3.48E+00	9.97E+00
HLRW [kg]	2.36E-06	1.32E-08	1.79E-07	1.81E-06	3.86E-06	2.28E-09	1.46E-08	8.24E-06
ILLRW [kg]	1.97E-03	1.17E-05	1.64E-04	1.51E-03	3.24E-03	1.92E-06	1.29E-05	6.91E-03
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	•		Biogenic Up	take and Emi	ssions			
BCRP [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEP [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCRK [kg CO2]	2.39E-01	0.00E+00	1.20E-02	0.00E+00	3.37E-01	0.00E+00	0.00E+00	6.28E-01
BCEK [kg CO2]	0.00E+00	0.00E+00	2.51E-01	0.00E+00	3.37E-01	0.00E+00	0.00E+00	6.28E-01
BCEW [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCE [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCR [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNR [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Life Cycle Assessment Interpretation

For Nidra™ and Zenscape™, replacements (B4) drive impacts across all TRACI 2.1 impact categories, due to the 30-year service life of the product. The 30-year product service life means that 1.5 replacements of the flooring will occur over the estimated 75-year service life of a building. Each replacement includes A1-A5 and C1-C4 lifecycle stages, explaining its impact on the results. Maintenance (B2) is the primary contributor to EP, as it includes all maintenance inputs across the 75-year service life. The use of water and detergent during maintenance contribute to eutrophication impacts, which are primarily driven by the nutrients from wastewater entering the aquatic systems.

Additional Environmental Information

Environment and Health During Manufacturing

Armstrong Flooring® has a robust internal Quality Assurance process that is based on industry-accepted best practices and is led by a team of quality professionals who have been certified by the American Society for Quality. The process involves several hundred different measures made throughout the manufacturing processes.

Environment and Health During Installation and Use

All Armstrong Flooring® products are tested and certified by <u>FloorScore</u>® to comply with the requirements of the California Department of Public Health Standard for the Testing and Evaluation of VOC emissions (CDPH v1.2).

Abbreviations

Table 14: LCIA Indicators

Abbreviation	Parameter	Unit			
	IPCC AR6				
GWPi	Global warming potential (100 years, including biogenic CO ₂)	kg CO₂ eq			
GWPe	Global warming potential (100 years, excluding biogenic CO ₂)	kg CO₂ eq			
	TRACI 2.1				
AP	Acidification potential of soil and water	kg SO₂ eq			
EP	Eutrophication potential	kg N eq			
ODP	Depletion of stratospheric ozone layer	kg CFC 11 eq			
SFP	Smog formation potential	kg O₃ eq			
CML 2001					
ADP _f	Abiotic depletion potential, fossil resources	MJ			

Table 15: Biogenic Carbon Indicators

Abbreviation	Parameter Parameter	Unit
BCRP	Biogenic Carbon Removal from Product	kg CO ₂
BCEP	Biogenic Carbon Emission from Product	kg CO ₂
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂
BCEK	Biogenic Carbon Emission from Packaging	kg CO ₂
BCEW	Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	kg CO ₂
CCE	Calcination Carbon Emissions	kg CO ₂
CCR	Carbonation Carbon Removals	kg CO ₂
CWNR	Carbon Emissions from Combustion of Waste from Non- Renewable Sources used in Production Processes	kg CO ₂

Table 16: Resource Use, Waste, and Output Flow Indicators

Abbreviation	Parameter	Unit			
Resource Use Parameters					
RPR _E	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value (LHV)			
RPR_M	Use of renewable primary energy resources used as raw materials	MJ, net calorific value			
NRPRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ, net calorific value			
NRPR _M	Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value			
SM	Use of secondary materials	kg			
RSF	Use of renewable secondary fuels	MJ, net calorific value			
NRSF	Use of non-renewable secondary fuels	MJ, net calorific value			
RE	Recovered energy	MJ, net calorific value			
FW	Net use of fresh water	m ³			
	Waste Parameters and Output Flows				
HWD	Disposed-of-hazardous waste	kg			
NHWD	Disposed-of non-hazardous waste	kg			
HLRW	High-level radioactive waste, conditioned, to final repository	kg			
ILLRW	Intermediate- and low-level radioactive waste, conditioned, to final repository	kg			
CRU	Components for reuse	kg			
MR	Materials for recycling	kg			
MER	Materials for energy recovery	kg			
EEE	Recovered electrical energy exported from the product system	MJ			
EET	Recovered thermal energy exported from the product system	MJ			

References

- CML Department of Industrial Ecology. (2016, September 05). CML-IA Characterisation Factors.

 Retrieved from https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- General Programme Instructions of the International EPD® System. Version 5.0.
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen,L]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- ISO. (2006). ISO 14025: Environmental labels and declarations Type III environmental declarations Principles and procedures. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14040/Amd 1:2020: Environmental management Life cycle assessment Principles and framework. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14044/Amd 1:2017/Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines. Geneva: International Organization for Standardization.
- ISO. (2017). ISO 21930: Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. Geneva: International Organization for Standardization.
- RFCI. (2024). Heterogeneous Sheet Vinyl Flooring Industry-Wide Environmental Product Declaration. SCS Global Services.
- UL Environment. (2022). Part A: Life Cycle Assessment Calculation Rules and Report Requirements, UL 10010, V4.0.
- UL Environment. (2018). Part B: Flooring EPD Requirements.
- US EPA. (2012). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 User Guide. Retrieved from https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf
- WAP Sustainability. (2025). Life Cycle Assessment for AHF Products.